EGD 50.xx

Single Turn Rotary Encoder CANopen

Instruction Manual
Datasheet

Revision 3.00
Relating firmware:
EGD50x. 300
EGD50xS. 300
EGD50xK. 300
EGD50xSK. 300

Last change 2015-12-07

Contents

1 General 3
2 Designations and Abbreviations 3
3 CANopen Units in General 3
4 General Remarks to this Manual 3
5 Objects for Communication According to CiA Draft Standard DS-301 Version 4.01 4
6 DSP-302 V 3.1 Objects 5
7 Objects Specific to the Device According to CiA DSP-406 Version 2.0 6
8 Manufacturer Specific Objects 8
9 Failure Messages 10
10 How to set the Node-ID 11
11 Programming by Hardware 13
12 Current Interface 15
13 Datasheet Encoder EGD 50.xx 16

1 General

EGD.xx CANopen Single Turn Rotary Encoder

Features:

- General
- Contact less measurement of the rotation angle of a pivoted magnet
- Low sensitivity against shocks and vibrations
- 360° non tripping rotation of the encoder axis
- 12 bit resolution of the position value (0 .. 4095)
- Adjustable angle position by button or CANopen protocol
- CAN

CANopen protocol according to CiA draft standard 301 (communication)

- Specific CANopen protocol for the unit following the CiA draft standard proposal 406
- Failure indication by an emergency object (communication and instrument failure)
- Current Interface
- Adjustable and scaleable through CANopen objects
- Scale range and failure range can be adjusted through buttons or CANopen object
- Failure indication by halved lower offset (e.g. $4 \mathrm{~mA} / 2$)

2 Designations and Abbreviations

CiA: CAN in Automation (www.can-cia.org)
DS, DSP: draft standard, draft standard proposal
Object: \quad CANopen objects can be data, parameter or functions of the device
Index: the index is a 16 bit value which identifies the object
Sub index the sub index (8bit) identifies a sub item of the index
NMT network management
SDO service data object
PDO process data object
COB-ID communications object identifier (controls the priority of the objects)
RO read only
RW read write
UINT32 unsigned int 32 bit

3 CANopen Units in General

Every CANopen unit uses for the communication in the CAN the standard which is described in CiA DS-301 edited by the CAN in Automation e.V. (CiA e.V.). It is necessary to know this standard in order to understand a CANopen unit. Furthermore every unit can use specific objects, for the encoder these are described in the CiA DSP-406, but they are not binding. Additionally specific objects of the manufacturer can be used and which facilitate the access to special parameters of the unit.

4 General Remarks to this Manual

In this manual only objects described, which are necessary to understand the CAN messages. All other objects which are implemented in the EGD are described in the Electronic Data Sheet (EDS). The EDS EGD50.300.eds is available for download under www.dr-e-horn.com. The structure of the EDS is described in document CiA DSP-306. All other used objects are fully described in document CiA DS301. The draft standards (DS) and draft standard proposals are edited by the CiA (CAN in Automation e.V., www.can-cia.org, phone: +49-9131-69086-0).

5 Objects for Communication According to CiA Draft Standard DS-301 Version 4.01

Object 1001h ERROR Register

This object differentiates failures and is sent as a part of the EMERGENCY object.
See also: chapter 9
Short description:

Data type: UNSIGNED8				
Index / Sub index	Parameter name	Bit	Function	Access
$1001 \mathrm{~h} / 00$	ERROR register	0	generic error (general failure)	RO
		1	current (not used)	RO
		2	voltage (not used)	RO
		3	temperature (not used)	RO
		4	communication error (overrun, error state)	RO
	5	device profile specific	RO	
		6	reserved (always 0)	RO
		7	manufacturer specific (failure of hardware)	RO

Object 1014h COB-ID Emergency

Contains besides others the COB-ID, which is used by the emergency message.
More information about this object in DSP-301 version 4.01.
Short description:

Data type: UNSIGNED32				
Index / Sub index	Parameter name	Bit	Function	Access
$1014 \mathrm{~h} / 00$	COB-ID emergency	32	ID of the emergency message	RO

Object 1017h Producer Heartbeat Time

This object contains the producer heartbeat time in milliseconds. If the value is 0 , no heartbeat is transmitted. The heartbeat is sent by ID 700h + Node-ID and shows the operation status
Range of values: 0 .. 65535
Short description:

Data type: UNSIGNED16

Index / Sub index	Parameter name	Bit	Function	Access
$1017 \mathrm{~h} / 00$	producer heartbeat time	16	distance between heartbeat messages	RW

The CAN bus shows the heartbeat:

ID	Byte 0 (operation status)
$700 \mathrm{~h}+$ Node-ID	05h (operational) or 7Fh (preoperational)

Object 1A00h Transmit PDO Mapping

Sub-index 0 : activation of the objects mentioned in sub-index 1 h and sub-index $2 \mathrm{~h}^{2)}$
Short description:

Data type: RECORD				
Index / Sub index	Parameter name	Bit	Function	Access
1A00h/00	transmit PDO mapping	8	value: $0=$ not active $1=6004 \mathrm{hactive}$ $2=6004 \mathrm{~h}$ and $6030 \mathrm{~h} \mathrm{active}^{2)}$	RO $^{1)}$

Data type: UNSIGNED32				Bit
Index / Sub index	Parameter name	32	informations about mapped object 6004h	RO
1A00h/01	PDO mapping for the 1st application object to be mapped			

Data type: UNSIGNED32				
Index / Sub index	Parameter name	Bit	Function	Access
1 A00h/02 ${ }^{2)}$	PDO mapping for the 2nd application object to be mapped	32	informations about mapped object $6030 \mathrm{~h}^{2)}$	RO

If the EGD 50.XX is in the operation status operational and the cycle time is not zero, depending on the activation of the contents, the objects out of the following table are shown.

1A00h/0h = 1 :

ID	Byte 0	Byte 1
$180 h$ + node-ID	6004 (LSB)	$6004 \mathrm{~h}(\mathrm{MSB})$

1 A00h/0h = 2 :

ID	Byte 0	Byte 1	Byte 2	Byte 3
$180 \mathrm{~h}+$ node-ID	$6004 \mathrm{~h}(\mathrm{LSB})$	$6004 \mathrm{~h}(\mathrm{MSB})$	$6030 \mathrm{~h}(\mathrm{LSB})$	$6030 \mathrm{~h}(\mathrm{MSB})$

The default value of object $1 \mathrm{~A} 00 \mathrm{~h} / 00 \mathrm{~h}$ is 1 (only object 6004 h is mapped in the PDO). When object $6030 h^{2)}$ also shall be mapped in the PDO, object 1A00h/00h must be set to 2.

1) when option "SPEED" is not available
2) when option „SPEED" is available

6 DSP-302 V 3.1 Objects

Object 1F80h NMT-Start-Up

By use of this object the EGD encoder after power on is able to change into the operational mode by itself.

Short description:

Data type: UNSIGNED32						Bit	Function	Access
Index / Sub index	Parameter name	32	$0 \times 8=$ automatic operation $0 x C=$ no automatic operation	RW				
1F80h/00	NMT start up							

7 Objects Specific to the Device According to CiA DSP-406 Version 2.0

The following objects specific to the unit are implemented.

Object 6000h Operating Parameters

By this object the counting direction can be influenced. Other functions of this object are not supported. Short description:

Data type: UNSIGNED16

Index / Sub index	Parameter name	Bit	Function	Access
$6000 \mathrm{~h} / 00$	operating parameter	16	$\mathrm{CW}^{*} / \mathrm{CCW}^{\star}=0 \times 0 / 0 \times 1$	RW

*CW = clockwise $=$ object $0 \times 6004 \mathrm{~h}$ counts up, if rotation is clockwise
*CCW = counter-clockwise $=$ object $0 \times 6004 \mathrm{~h}$ counts down, if rotation is clockwise
Viewed to the shaft of the encoder clockwise means a turn to the right.

Object 6003h Preset Value

The position value (PDO 1 respective object $6004 \mathrm{~h} / 00$) can be shifted by this parameter.
Range of values: Oh - FFFh
Short description:

Data type: UNSIGNED16				Bit
Index / Sub index	Parameter name	16	sets the position to the desired value	RW
$6003 \mathrm{~h} / 00$	preset value	Access		

Object 6004h Position Value

This object informs about the position. It can be recalled by a SDO or it can be part of the mapping of PDO 1.

Short description:

Data type: UNSIGNED16

Index / Sub index	Parameter name	Bit	Function	Access
$6004 \mathrm{~h} / 00$	position value	16	position value	RO

Object 6030h Speed ${ }^{1)}$

This object informs about the angle speed. It can be recalled by a SDO or it can be part of the mapping of PDO 1. When object $0 \times 6004 \mathrm{~h}$ counts up, the value is positive and when object $0 \times 6004 \mathrm{~h}$ counts down the value is negative. The range of the values is from -2047 to +2047 and is a hundredfold of the angle speed in degrees per second [$\%$ s]. Therefore the angle speed can be between -20.47% and $20.47 \% \mathrm{~s}$. If these values are exceeded the encoder gives an emergency message and the actual value becomes invalid. Only if the angle speed participates at the actual mapping, it is failure controlled. See chapter 9 .
Short description:

Data type: UNSIGNED16				
Index / Sub index	Parameter name	Bit	Function	Access
$6030 \mathrm{~h} / 00$	angle velocity	16	angle speed	RO

[^0]
Object 6200h - Cyclic Timer

Object 6200h contains the transmitting cycle time of the PDO 1 in milliseconds. If the parameter is >0 the PDO 1 will be sent periodically with this cycle time.

Range of values: 0 ms .. 65535 ms
e.g.: $30 \mathrm{~ms}=1 \mathrm{Eh}$

Short description:

Data type: UNSIGNED16

Index / Sub index	Parameter name	Bit	Function	Access
$6200 \mathrm{~h} / 00$	cycle time	16	transmitting cycle time of PDO 1	RW

Object 6401h Working Area Low Limit

Is used for the setting of the parameters of the optional current interface and their lower limit values.
Sub-index 0: Number of sub-indexes
Sub-index 1: Angle position related to the lower current limit value
Sub-index 2: Lower current limit value
Sub-index 3: From this position 2 mA is shown by the current interface as a failure
Short description:

Data type: UNSIGNED16

Index / Sub index	Parameter name	Bit	Function	Access
$6401 \mathrm{~h} / 00$	-	8	number of sub-indexes	RO
$6401 \mathrm{~h} / 01$	current scale lower limit	16	beginning of scale of the current interface	RW
$6401 \mathrm{~h} / 02$	lower user current limit	16	lower current limit min.: 30 is appropriate to 3 mA	RW
$6401 \mathrm{~h} / 03$	current lower error switch limit (min.: beginning of scale -70)	16	scale limit from where 2 mA is shown as a failure	RW

Object 6402h Working Area High Limit

Is used for the setting of the parameters of the optional current interface and their upper limit values.
Sub-index 0: Number of sub-indexes
Sub-index 1: Angle position related to the upper current limit value
Sub-index 2: Upper current limit value
Sub-index 3: From this position 2 mA is shown by the current interface as a failure
Short description:

Data type: UNSIGNED16				
Index / Sub index	Parameter name	Bit	Function	Access
$6402 \mathrm{~h} / 00$	-	8	number of sub-indexes	RO
$6402 \mathrm{~h} / 01$	current scale upper limit	16	end of scale of the current interface	RW
$6402 \mathrm{~h} / 02$	upper user current limit	16	upper current limit max.: 210 is appropriate to 21 mA	RW
$6402 \mathrm{~h} / 03$	current upper error switch limit (max.: end of scale +70$)$	16	scale limit from where 2 mA is shown as a failure	RW

Object 6501h Single Turn Resolution (Rotary)

Object 6501 h contains the resolution of the encoder.
Short description:

Data type: UNSIGNED32				
Index / Sub index	Parameter name	Bit	Function	Access
$6501 \mathrm{~h} / 00$	single turn resolution	32	single turn resolution	RO

Object 6502h Number of Distinguishable Revolutions

Object 6502h contains the number of distinguishable revolutions.
Short description:

Data type: UNSIGNED16				Bit
Index / Sub index	Parameter name	16	number of distinguishable revolutions	RO
$6502 \mathrm{~h} / 00$	number of distinguishable revolutions			

8 Manufacturer Specific Objects

Object 2000h Low Pass Value ${ }^{1)}$

The low pass value is used for the digital low pass filter for the angle speed.
The input value is a tenfold of the used value, e.g. input = 85 is appropriate to used value 8.5.
Minimum: 10 is appropriate to 1.0
Maximum: 255 is appropriate to 25.5
The digital low pass filter is disabled, when object 2000 h is set to 10 .
Short description:

Data type: UNSIGNED8				
Index / Sub index	Parameter name	Bit	Function	Access
$2000 \mathrm{~h} / 00$	low pass value	8	filter for the angle speed	RW

1) when option „SPEED" is available

Object 2001h Node-ID Offset

Allows the setting of 127 identifiers.
This value must be added to the hardware value, the result is the used CAN-Node-ID.
If the calculated node-ID is less than 1 or greater than 127 the node-ID is set to 127.
Short description:

Data type: UNSIGNED8				
Index / Sub index	Parameter name	Bit	Function	Access
$2001 \mathrm{~h} / 00$	node ID offset	8	set node-ID	RW

Object 2002h Position Offset

The position value (PDO 1 respective object $6004 \mathrm{~h} / 00$) can be shifted by this parameter. This is an alternative method instead of using object 6003h/00.

Range of value: 0 .. 4095
Short description:

Data type: UNSIGNED16				
Index / Sub index	Parameter name	Bit	Function	Access
$2002 \mathrm{~h} / 00$	position offset	16	shifts the position value	RW

Object 2003h Boot Loader Function

Allows turning on the boot loader jump bit (BLJB) by setting the value $0 \times 5 \mathrm{~A}$. The value 0×00 resets the BLJB.
This feature is a specialty of the internal used microcontroller, it starts the "IAP" (In Application Programming) and will be executed after switching the power supply off and on.

Short description:

Data type: UNSIGNED8				
Index / Sub index	Parameter name	Bit	Function	Access
$2003 \mathrm{~h} / 00$	Boot loader activate	8	set BLJB with 0x5A	RW

Object 2100h Manufacturer Calibrated Lower Current Limit

Attention: If this object is changed, the manufacturer calibration of the current interface will be lost. For the adaption of the current interface please use the objects 6401h and 6402h.

Short description:

Data type: UNSIGNED16				
Index / Sub index	Parameter name	Bit	Function	Access
$2100 \mathrm{~h} / 00$	manufacturer calibrated lower current limit	16	manufacturer's calibration	RW

Object 2101h Manufacturer Calibrated Upper Current Limit

Attention: If this object is changed, the manufacturer calibration of the current interface will be lost.
For the adaption of the current interface please use the objects 6401h and 6402h.
Short description:

Data type: UNSIGNED16				Bit
Index / Sub index	Parameter name	16	manufacturer's calibration	RW
$2101 \mathrm{~h} / 00$	manufacturer calibrated upper current limit			

9 Failure Messages

Recognized failures are shown on the CAN by the use of an emergency object.
The EGD-encoder supports the mandatory failure codes according to CiA DS-301 V4.01 and shows failures specific to the unit.

Error Code (mandatory)

$00 x x$ Error reset or no error = the failure is corrected
$10 x x$ Generic error = e.g. communication failure

Error Code (optional)

FF81h specific to the device.
If a failure specific to the manufacturer is transmitted to the CAN by an emergency message (COB-ID: 80h + Node-ID), the values transmitted from the PDO are invalid.
Emergency Object Data

Byte	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
content	e.g. FF81h (device specific)	error register (object 1001h)	manufacturer specific error field byte $7>0=$ position failure byte $6>0=$ speed failure					

10 How to set the Node-ID

Every CANopen device in the CANopen network requires an unique node-ID. The node-ID is programmable by hardware and software.
The used node-ID is the sum of a software related component and a hardware related component. The software related component is the value of object 2001h. The adjustment of the hardware related component differs between the versions of EGD devices.
Devices EGD50.4, EGD50.5:
Usage of ID-wires, which can be shorted to ground:

Wire IDNo_8	Wire IDNo_4	Wire IDNo_2	Wire IDNo_1	Hardware component of node-ID
Open	Open	Open	Open	0
Open	Open	Open	Shorted	1
Open	Open	Shorted	Open	2
Open	Open	Shorted	Shorted	3
Open	Shorted	Open	Open	4
Open	Shorted	Open	Shorted	5
Open	Shorted	Shorted	Open	6
Open	Shorted	Shorted	Shorted	7
Shorted	Open	Open	Open	8
Shorted	Open	Open	Shorted	9
Shorted	Open	Shorted	Open	10
Shorted	Open	Shorted	Shorted	11
Shorted	Shorted	Open	Open	12
Shorted	Shorted	Open	Shorted	13
Shorted	Shorted	Shorted	Open	14
Shorted	Shorted	Shorted	Shorted	15

Open : Wire is not connected
Shorted: Wire is shorted to ground

Device EGD50.6:

Usage of an ID-switch or jumpers (according to used PCB):
Hardware component of node-ID = position of the switch (or usage of jumpers as EGD50.7)

Device EGD50.7:

Usage of jumpers, which can be shorted:

Jumper ID4	Jumper ID3	Jumper ID2	Jumper ID1	Hardware component of node-ID
Shorted	Shorted	Shorted	Shorted	0
Shorted	Shorted	Shorted	Open	1
Shorted	Shorted	Open	Shorted	2
Shorted	Shorted	Open	Open	3
Shorted	Open	Shorted	Shorted	4
Shorted	Open	Shorted	Open	5

Jumper ID4	Jumper ID3	Jumper ID2	Jumper ID1	Hardware component of node-ID
Shorted	Open	Open	Shorted	6
Shorted	Open	Open	Open	7
Open	Shorted	Shorted	Shorted	8
Open	Shorted	Shorted	Open	9
Open	Shorted	Open	Shorted	10
Open	Shorted	Open	Open	11
Open	Open	Shorted	Shorted	12
Open	Open	Shorted	Open	13
Open	Open	Open	Shorted	14
Open	Open	Open	Open	15

Open : Jumper is not set
Shorted: Jumper is set

Figure 1: Position of the ID jumpers at EGD50.7

Final calculation of the node-ID:

Node-ID = value of object $2001 \mathrm{~h}+$ hardware component of node-ID
Note: If the resulting node-ID is zero or greater than 127 it will be set to 127.

11 Programming by Hardware

Description of the programming possibilities by the hardware.
By this function some of the parameters of the unit can be set without CAN.

Units with "Set" Wire

- 1. possibility: Change of the up counting direction switch off the unit
- connect set wire with ground
- switch on the unit
- unit changes the up counting direction (CW/CCW) disconnect set wire from ground
- 2. possibility: Setting 12 mA to 0° (Forward position) switch on the unit
- shortly connect set wire with ground
- unit sets position to preset value from object 6003 h
- current interface shows 12 mA

Units with "Set" Wire and S04-, S12, S20-Wire

- 1. possibility: Change of the counting direction switch off the unit
- connect set wire with ground
- switch on the unit
- unit changes the up counting direction (CW/CCW)
- disconnect set wire from ground
- 2. possibility: Setting 4 mA -, $12 \mathrm{~mA}, 20 \mathrm{~mA}$ position value switch on the unit
- 2.1 Setting 12mA position:
- connect S12-wire with ground and turn encoder shaft / drive shaft to the required position
- shortly connect set wire with ground
- unit sets position to pre-set value from object 6003h
- current interface shows 12 mA
- disconnect S12-wire from ground
- 2.2 Setting 4mA position:
- connect S04-wire with ground and turn encoder shaft / drive shaft to the required position
- shortly connect set wire with ground
- unit sets position as the beginning of scale object 6401h
- current interface shows 4 mA
- disconnect S04-wire from ground
- 2.3 Setting 20mA position:
- connect S20-wire with ground and turn encoder shaft / drive shaft to the required position
- shortly connect set wire with ground
- unit sets position as the end of scale object 6402h
- current interface shows 20 mA
- disconnect S20-wire from ground

Attention:

Follow the order of steps 2.1, 2.2 and 2.3! Be sure that the 4 mA -position is in the direction of lower current values if you move away from the 12 mA position.
If your wanted 4 mA -position is in the upper range ($12 \ldots 20 \mathrm{~mA}$) then interrupt your action and change the counting direction as described in step 1). See also Figure 1!

Please make sure that the adjusted Object 2001h: Node-ID Offset is $\mathbf{0}$ before you start setting of 4 mA -, 12 mA and 20 mA position value. Otherwise setting of 4 mA -, 12 mA and 20 mA position value will not work properly!

Units with "Set" Button

- 1. possibility: Change of the counting direction switch off the unit
- press the "set" button
- switch on the unit
- unit changes the up counting direction (CW/CCW)
- release the "set" button
- Other possibilities:
- The LED at these units shows different operation modes. Before every longer push on the button the number of blinking signals must be controlled.
- Functions of the LED:
- LED lights as long the button is pressed.
- LED extinguishes if the button was pressed longer and shows then the setting of the values.
- LED blinks and shows the adjustment mode.
- Functions of the set button:
- Short push on the button (<1 s) = switch mode forward
- Long push on the button (>2 s) = set and store value

Number of blinking signals	Mode	Action
0	operation	- long push on the button to reach the programming mode
1	middle position	- turn axis to foreseen middle position; - long push on the button to set this value; - current interface is set to the middle value;
2	beginning of scale	- turn encoder axis to the beginning of the scale; - current interface shows value smaller than middle value; - long push on the button to set this value; - current interface is set to the lower value;
3	end of scale	- turn encoder axis to the end of the scale; - current interface shows value bigger than middle value; - long push on the button to set this value; - current interface is set to the upper value (e.g. 20 mA)
4	Node-ID offset	- set ID-jumper to the desired value (high nibble); - long push on the button to set this value; - set ID-jumper to the desired value (low nibble);
5	end	- long push on the button returns device to operation mode
6	factory default values	- set parameter values to factory default values - affects parameters 2001h/00, 6000h/00, 6003h/00, 6401h/01, 6401h/02, 6401h/03, 6402h/01, 6402h/02 and 6402h/03 - the current interface will be set to $0 . .360^{\circ}$-> $4 . .20 \mathrm{~mA}$ - the calibration data for the current interface are not affected

Note:

- Node-ID = high nibble + low nibble; new ID will be valid after power supply has been switched off and on!
- The overdrive range for the current interface will be set automatically 70 increments large: Object $6401 \mathrm{~h} / 03$ will be set to object $6401 \mathrm{~h} / 01-70$ and object $6402 \mathrm{~h} / 03$ will be set to object $6402 \mathrm{~h} / 01+70$. The range of the angle values ($0 . .4095$) will not be exceeded.
- Returning to standard operation mode can be activated when the LED shows 5 blinking signals due to compatibility reasons with elder firmware versions.

12 Current Interface

Note: Not available for all units!

Features:

- Calibrated in the factory to $4-20 \mathrm{~mA}$.
- Free adjustable to other values than 4-20 mA, e.g. 5-19 mA, see CAN objects 6401h and 6402h.
- The minimum and maximum values can be exceeded (approx. 0,5 mA) as a hysteresis for the failure indicator 2 mA .
- Free allocation of the positions starting angle, stop angle and middle position.
- Positions adjustable by buttons (resp. set wire) or by the CANopen objects 6401h and 6402h.
- Failure indication: 2mA

The following sketch shows the context between the CANopen objects and the current interface:

Figure 1

The following requirements have to be met:

- Object $6401 \mathrm{~h} / 01$ has to be less or equal as object 6003 h
- Object 6402h/01 has to be greater or equal as object 6003h
- Object 6401h/03 has to be less or equal as object 6401h/01
- Object $6402 \mathrm{~h} / 03$ has to be greater or equal as object $6402 \mathrm{~h} / 01$
- All objects have to be in the range of $0 . .4095$

13 Datasheet Encoder EGD 50.xx

Electrical Data

Power supply / consumption: Operating/storage temperature:

Mechanical Data

Friction torque:
Housing:
Dimensions:
Shaft loading:
Vibration:
Shock:
Protection class:
Relative humidity:

Accuracy Data:

Measurement range/resolution:
Linearity:

CAN Interface:

Transmission rate:
CAN-Bus termination:
NMT:
Error control:
Node ID:
No. of PDOs:
PDO modes:
PDO mapping:
PDO data:
No. of SDOs:
Emergency message:
CANopen version:
Device profile:
CAN network:

4-20 mA output (Option)

Range:
Burden:
Design:

Classification:

Address setting (Node-ID:)

24 VDC (-20 \% +25 \%) / up to approx. 2 W
$-5^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C} /-10^{\circ} \mathrm{C} \ldots 85^{\circ} \mathrm{C}$
$<2.5 \mathrm{Ncm}$
Aluminium
According to drawing
Axial / radial 45 N
IEC 68 section 2-6 diagram 2
IEC 68 section 2-27
Housing IP 67, shaft IP 65 according to DIN 40050
< 90%, not condensing
$360 \% 12$ bit
Max. $\pm 0,5 \%$, typically $\pm 0.3 \%$

125 kbit/s, max. cable length 500 m
120 R programmable according to type by cabling or jumper
CANopen Slave
Heartbeat producer
Programmable according to type by cabling or jumper
0 Rx, 1 Tx
Asynchronous (event-triggered)
Adjustable
Position, angle speed
1 server, 1 client
Via emergency message
DS-301 V4.01
DSP-406 V2.0
DSP-302 V3. 1

3-20 mA (adjustable)
Max. 500 R
EGD50.4x, EGD 50.5 x galvanic isolated from the power supply, without own logic; system A has to be switched on.
EGD50.6x own logic ($1 \times$ CAN or $1 \times$ current)
EGD50.7x combined logic (double encoder with 2 systems, $1 \times$ CAN and $1 \times$ current per system)

GL

EGD 50.4x, EGD 50.5x:

ID-wire connected to ground = 1
ID-wire not connected (isolated) $=0$
Values of the wires: white $=1$, grey $=2$, pink $=4$
Node-ID = sum of all grounded wires
EGD 50.6x, EGD 50.7x:
Plugged jumper = 0
Removed jumper = 1
Value of the jumper: According to connection label
Node-ID = sum of the values of all removed jumpers

[^0]: 1) when option „SPEED" is available
